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Abstract
The final-state interaction in multichannel decay processes is systematically studied in the

hadronic picture with application to B decay in mind. Since the final-state interaction is intrinsi-

cally interwoven with the decay interaction in this case, no simple phase theorem like “Watson’s

theorem” holds for experimentally observed final states. We first solve exactly the two-channel

problem as a toy model in order to clarify the issues. The constraints of the two-channel approxi-

mation turns out to be too stringent for most B decay modes, but realistic multichannel problems

are too complex for useful quantitative analysis at present. To alleviate the stringent constraints

of the two-body problem and to cope with complexity beyond it, we introduce a method of ap-

proximation that is applicable to the case where one prominent inelastic channel dominates over

all others. We illustrate this approximation method with the amplitude of the decay B → Kπ fed

by the intermediate states of a charmed-meson pair. Even with our approximation we need more

accurate information of strong interactions than we have now. Nonetheless we are able to obtain

some insight in the issue and draw useful conclusions on general features on the strong phases.
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I. INTRODUCTION

The well-known phase theorem [1] holds for the final-state interaction (FSI) of decay
processes when the final state consists of a single eigenstate of scattering. While no simple
nontrivial extension is known in the case of multichannel final states, some calculations were
made in the past with unjustified extension of the single-channel phase theorem[2]. A two-
channel problem was studied with a certain class of S-matrix and the correct observation
was made that inelastic channels are the main source of strong phases in many B decay
modes[3]. However, it is not easy to obtain quantitatively reliable results from the two-
channel model. Taking the large limit of open channels, the statistical model [4, 5] was
proposed as an alternative approach. Quantitatively, however, it is short of predictive power
since it does not ask for detailed knowledge of strong interaction. When one approaches the
problem in the quark-gluon picture, one faces inability or large uncertainty in computing
contributions of the soft collinear constituents numerically. It is fair to say that at present
we are far from successful computation of a FSI phase in multichannel decay processes.

In this paper we first study the two-channel problem in detail. The problem is solvable in
a reasonably compact form without approximation or assumption if relevant information is
available about strong interaction physics and decay branching fractions. The general solu-
tion to the two-channel toy-model shows how the elastic scattering phases and the channel
coupling contribute to the total FSI phase. It concludes in agreement with Donoghue et al[3]
that if a large strong phase emerges in the B decay into two light-mesons, its major source
is coupling to decay channels that have large branching fractions.1 Although it points to
the source of problems in strong phases, the simple two-channel model is inapplicable to B
decay. We proceed to the case of more than two decay channels. Even the three-channel
problem is mathematically too complicated for solving in a compact form. On the physics
side our knowledge of strong interaction at total energy 5 GeV (≃ mB) is not good enough
to carry through the analysis with precision. To cope with formidable complexity of the
problem, we introduce an approximation method that works in the case that, aside from
the channel of our interest, one inelastic channel dominates over all others. This is different
from an approximate two-channel problem. It can happen, for instance, to the two-body
light-hadron decays of B meson when they couple to the charmed-meson pair states. We
apply our approximation method to the decay B → Kπ and make semiquantitative analysis
with knowledge of hadron physics currently available to us.

II. FRAMEWORK AND INPUT

Two basic ingredients in discussion of FSI are unitarity and time-reversal. In the Standard
Model the decay interaction is sum of effective local operators Oa(a = 1, 2, 3, · · ·), each of
which has a CP-violating (and therefore T-violating) phase factored out as

Hinte
iδw + h.c., (THintT

−1 = Hint). (1)

The T-violating “weak phase” δw arises from the CKM elements. In computing decay
amplitudes we work separately on the T -invariant part Hint of the decay interaction. In the

1 This was suggested to the author by Wolfenstein in many occasions over years.[6]
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case that T -violation is more general, we can break up the weak interactions Hw into T -even

and T -odd parts as H
(±)
int ≡ 1

2
(Hw ± THwT−1) so that

TH
(±)
int T−1 = ±H

(±)
int . (2)

Then both H
(+)
int and iH

(−)
int are T -even since i → i∗ = −i under time reversal.2 We should

compute the decay amplitudes for H
(+)
int and iH

(−)
int separately and take a suitable sum of them

at the end. Therefore it is sufficient to consider in general only T -even weak interactions.
No matter what method one may use, computation of FSI phases must always be made
separately for different decay operators. Because two decay operators generate two different
FSI phases for the same decay process even if the net quantum numbers of operators are
identical. We consider in this paper only final-state interaction of strong interaction though
it is in principle easy to include electromagnetic FSI. We shall refer to FSI phases also as
strong phases in this paper.

With T -invariance, the strong S-matrix operator obeys

TST−1 = S†. (3)

We can always choose phases of states such that the T -invariant S-matrix elements (Skj =
〈k|S|j〉 = 〈kout|jin〉) are not only unitary but symmetric;

Sjk = Skj (4)

since |jin〉 → 〈jout| and 〈kout| → |kin〉 under time reversal. It is emphasized here that
the requirement of Eq. (4) fixes the phases of states except for the overall sign of ±1.3

Specifically for the eigenchannels of the S-matrix |ain〉 and 〈bout|, it holds by definition that

〈b|S|a〉 = 〈bout|ain〉 = δbae
2iδa , (5)

where δa is the eigenphase shift. In the case of decay matrix elements, the initial state is a
one-particle state that is stable with respect to strong interaction. Since the initial decaying
state is an asymptotic state with respect to strong interaction, there is no distinction between
“in” and “out” states. For B decay

|B〉 T−→ 〈B|, (6)

where we choose the B meson at rest. Eq. (6) removes an arbitrary unphysical phase from
the state |B〉 too.

A simple relation results from time reversal of the decay matrix element 〈aout|Hint|B〉
when the final state 〈aout| is an eigenstate of S. T-invariance of Hint leads to

〈aout|Hint|B〉 = 〈B|Hint|ain〉. (7)

2 If we make this breakup for the Standard Model interaction, we would get H
(+)
int = cos δwHint and

iH
(−)
int = − sin δwHint for the first term Hw = Hinte

iδw of Eq. (1).
3 If one multiplies the states with some phases as |j〉 → eiα|j〉 and |k〉 → eiβ |k〉, Sjk and Skj would acquire

phases of opposite signs e±i(β−α) so that the equality Sjk = Skj would break down.
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Inserting the completeness relation
∑

b |bout〉〈bout| = I next to Hint in the right-hand side,
we obtain from Eq. (7) with Eq. (5)

〈aout|Hint|B〉 =
∑

b

〈B|Hint|bout〉〈bout|ain〉 = e2iδa〈aout|Hint|B〉∗. (8)

With the decay amplitude 〈aout|Hint|B〉 into the eigenchannel a denoted by Aa, this relation
reads

Aa = e2iδaA∗
a, (9)

namely, Aa = ±eiδa |Aa|. This is the well-known phase theorem usually referred to as Wat-
son’s theorem[1]. It is a powerful theorem when the final state is an eigenstate of S. It has
been an important tool of analysis in hyperon decay and K → ππ decay.

But this relation is of little use when rescattering has inelasticity. We mean by inelastic-

ity that observable final states are linear combinations of eigenstates whose weights are not

simply determined by the Clebsch-Gordan coefficients of isospin symmetry or SU(3) coeffi-
cients. In such cases the phase of the elastic scattering amplitude has little to nothing to do
with the FSI phase of the corresponding decay amplitude, as we shall see it in a moment.

Usefulness of the phase theorem is thus limited to the decay of low-mass particles where
rescattering is purely elastic up to isospin structure. If the K meson mass were sufficiently
above 1 GeV, for instance, ππ of definite isospin would no longer be an eigenstate of S-matrix
even approximately. The state ρρ and ωω would enter an S-matrix eigenchannel with ππ
and composition of such an eigenstate depends on low-energy dynamics of the transition
among ππ, ρρ, and ωω. In the case of B decay an experimentally observed final state is a
linear combination of many different S-matrix eigenstates so that the net FSI phase results
from the eigenphases weighted with the decay amplitudes of B → eigenstate. Take. for

instance, the ππ final state in I = 0 of B
0

decay. The state |ππ〉I=0 (in s-wave) is far
from being an S-matrix eigenstate at energy mB. If we want to use the phase theorem Eq.
(9), we must expand |ππ〉 in the strong S-matrix eigenstates at mB. However, we have
little knowledge of these eigenstates since their composition depends sensitively on strong
interaction at long and intermediate distances. Experimentally the two-body channels do
not account for all final states in B decay. Three and four particle final states of the same
JPC may be significant. Unless there is a good reason to believe that channel coupling is
negligible among these final states, the strong S-matrix eigenstates at mB are made of many
different particle states (ππ, ρρ, KK, ππKK, · · ·). Therefore, if we expand the ππ state at
total energy mB, it is a linear combination of many different eigenstates of strong S-matrix.
We would have to know these expansion coefficients in order to determine the FSI phase of
ππ final state with the phase theorem.

Let us formulate what we have described above. When an observable final state |iout〉 is
not S-matrix eigenstate, we expand it in the eigenstates of S-matrix |aout〉 as4

|iout〉 =
∑

a

Oia|aout〉. (10)

We choose that the S-matrix is symmetric (Sij = Sji) in the basis of the observable states.
(cf Eq./ (4)) Then the expansion coefficients Oia are real, that is, the transformation matrix

4 We represent the S-matrix eignestates by |a〉, |b〉, · · · and the observed particle states by |i〉, |j〉, |k〉, · · ·.
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O in Eq. (10) is an orthogonal matrix. (See Appendix if proof is needed.) With this
expansion and Eq. (9),

Ai =
∑

a

OiaAa =
∑

a

Oiae
2iδaA∗

a. (11)

We are able to write the right-hand side of Eq. (11) in terms of observable decay amplitudes
Aj ’s as

Ai =
∑

aj

Oiae
2iδaOjaA

∗
j ,

=
∑

j

SijA
∗
j , (12)

where Sij = Oiae
2iδaOja has been used. This is the fundamental relation in discussion of FSI.

The physical picture is simple and clear. (Fig.1) The input is unitarity and time-reversal
of the S-matrix aside from choice of unphysical phases of states. Dynamical information of
strong interaction is fed through the eigenphases δa and the orthogonal mixing matrix O.
In addition, we must provide relative magnitude of the amplitudes Ai as independent pieces
of input from weak interaction. Consequently the phase of Ai depends not only on strong
interaction but also on weak interaction. It is clear here that the FSI phase of a decay
amplitude has virtually nothing to do with the phase of the elastic scattering amplitude
aJ(s) of J = 0 at 5 GeV. Although it looks almost futile to go any further, the purpose of
this paper is to extract something useful for B decay out of Eq. (12).

B
j i

S

FIG. 1: The final-state interaction relation in diagrams. Eq. (12).

III. DYNAMICAL INPUT

We focus on the FSI phases of the two-body decay modes of the B meson. The phases
of three-body decay amplitudes depend on the sub-energies of three particles. It is only the
phases integrated over the sub-energies with the total energy fixed to mB that enter Eq.
(12). We need the S-matrix elements Sij from experiment. To be concrete, let us consider
the elastic π+π− scattering amplitude as an example. The argument below is identical for
other two-body channels of light mesons. In B decay the relevant partial-wave channel is
π+π− in s-wave (JP = 0+) with isospin I = 0 and I = 2.

Although the high-energy ππ scattering cannot be directly measured in experiment, we
can make a reasonable estimate about elastic ππ scattering since the center-of-momentum
energy 5 GeV is in the high-energy asymptotic region well above the ππ resonances.5 The

5 The excited charmonia exist at mass not far below 5 GeV but their coupling to light hadrons is suppressed

by QCD. Coupling of ππ to the open charm channels[7] is one of interesting subjects of our study later in

this paper.
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FIG. 2: The Regge exchange in elastic ππ scattering.

two-body light-hadron scattering in the high energy asymptotic region was studied theo-
retically and experimentally in the 1960’s. The Regge theory describes this physics well.
The properties of the Regge trajectories can be deduced from meson-nucleon and nucleon-
nucleon scattering even though we have no meson-meson scattering experiment. We give a
very brief review[8] of our knowledge in this area of the past time since it is an important
input in our study of FSI.

First of all, the Pomeron exchange dominates in high-energy elastic scattering. (Fig 2)
The Pomeron may include a cut and can be more a complicated singularity than a simple pole
in J-plane unlike the non-Pomeron trajectories such as ρ and f2. At the level of numerical
accuracy of our discussion, however, we treat the Pomeron as a simple pole at J = α(t)
with the intercept α(0) = 1 and a vanishingly small slope. This entails factorization of
the J-plane residue into product of two vertices. Since isospin is zero for the Pomeron, it
contributes equally to the I = 0 and I = 2 states of the crossed channels ππ. With these
properties of the Pomeron we obtain necessary pieces of information on ππ scattering from
πp and pp scattering at high energies.

The invariant amplitude for the asymptotic elastic scattering is parametrized with the
Regge parameters of the Pomeron in the form

Aππ(s, t) = −βππ
P (t)

1 + e−iπαP (t)

sin παP (t)

( s

s0

)αP (t)
(13)

where βππ
P (t) = (βπ

P (t))2 and αP (t) ≃ 1 + α′
P (0)t + · · · are the factorized residue and the

trajectory of the Pomeron, respectively, in terms of the invariant momentum transfer t.6

We can fix βππ
P (0) by the optical theorem σtot = ImA(s, 0)/s and the factorization relation

σππ
tot ≃ (σπp

tot)
2/σpp

tot ≃ 22mb at
√

s = mB [8, 9]. The value 22mb is in line with the empirical
quark counting rule, σππ

tot ≃ 2
3
σπp

tot ≃ (2
3
)2σpp

tot[10]. The width of the forward peak is more or
less universal to all elastic hadron scatterings[11, 12]. We approximate the Pomeron slope
to zero (α′

P (0) ≃ 0) and fit the forward elastic peak with the standard exponential form
exp(t/t0). The diffraction peak parameter is fixed by experiment to t0 ≃ (0.22 ∼ 0.29)GeV2

by the elasticity σel/σtot at
√

s = mB[9, 13, 14]. This value of t0 reproduces the t dependence
of dσel/dt that falls by roughly three orders of magnitude from t = 0 to t ≃ −1 GeV2 for
pp and πp scattering[11, 12]. It is justified by factorization to choose the ππ forward peak
parameter equal to that of pp and πp. The ππ invariant amplitude at high energies is thus

6 The possible small log2 s rise of σtot(s) does not set in at
√

s ≃5 GeV. We may safely ignore it in our

numerical work. We have included in βππ
P (t) the t-dependence of some other kinematical factors such as

2αP (t) + 1. The value of s0 is at our choice, normally chosen to be 1 GeV2.
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set to
Aππ(s, t) ≃ 22 mb × i s e

t
t0 , (14)

where we choose t0 = (0.253±0.033)GeV2. The uncertainty in t0 is primarily due to whether
one estimates it with σel/σtot of π±p or pp and pp.

The partial-wave amplitudes al(s) can be projected out of Aππ(s, t). The result for the
s-wave is:

aππ
0 (s) = (0.282 ± 0.037)i, (at s = m2

B), (15)

which leads to the s-wave S-matrix with 2|pcm|/
√

s ≃ 1,

Sππ
0 (s) = 1 + 2iaππ

0 (s). (16)

Hereafter we shall often parametrize strength of elastic scattering by ǫ as

S0(s) = 1 − ǫ, (17)

With Eq. (15), the Pomeron contribution to the S-matrix of ππ scattering at mB is

Sππ
0 ≃ 1 − (0.56 ± 0.07). (18)

The partial-wave amplitudes al(s) extracted from the flat Pomeron amplitude are purely
imaginary for all l. The amplitude a0(s) approaches asymptotically the imaginary axis
below the center of the Argand diagram (shown schematically for I = 0 in Fig. 3). If one
described the high inelasticity of high-energy ππ scattering by an absorptive black sphere
potential, one would have Sππ

0 (s) → 0 (i.e., a0(s) → 0.5i). In this limit σel → 1
2
σtot for

all l’s by shadow scattering effect, which is in disagreement with experiment. Although the
numerical value in the right-hand side of Eq. (18) has been extracted for the ππ channel, it

is much the same for other two-meson channels. With a help of the Kp cross section σKp
tot [9]

we obtain

SπK
0 ≃ 1 − 0.51, (πK)

SKK
0 ≃ 1 − 0.45, (KK), (19)

where uncertainties are comparable to ±0.07 quoted for ππ in Eq. (18) or a little larger.
The values in Eqs. (18) and (19) are the Pomeron contribution alone. The nonleading

Regge exchanges generate a small imaginary part for S0. The relevant trajectories are the
ρ and f2 in the case of ππ. Their contributions can be estimated with a few additional
theoretical inputs7 from the cross section difference σπ−p − σπ+p ≃ 1.6mb at

√
s = mB[14].

Within the uncertainty due to t-dependence of the residue β(t), their contributions to ImS0

are at the level of 0.05i for ππ. Some may wonder about validity of extracting the s-wave
amplitude from the forward peak region alone. The s-wave amplitude has a flat angular
dependence so that the contribution of a0(s) extends equally to all directions (P0(cos θ) = 1).
On the other hand experiment shows that the forward peak falls off by more than three
orders of magnitude and there is no sign of the s-wave contribution at large angles. But
this is no surprise. The s-wave amplitude at large angles is canceled by the partial-wave
amplitudes of up to l = O(

√
s) which are rapidly oscillatory in angular dependence as

Pl(cos θ) ∼ sin[(l + 1
2
)θ + π

4
)]/

√
l sin θ (for lθ ≫ 1).

Now our task is to extract useful pieces of information from Eq. (12) with the high-energy
elastic S-matrix of Eq. (18) or Eq. (19).

7 The inputs are the isospin-current coupling of ρ and the exchange degeneracy of ρ and f2.
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FIG. 3: Energy dependence of a0(s) in the complex plane (Argand diagram).

IV. FINAL STATE INTERACTION OF TWO COUPLED CHANNELS

Let us first count how many dynamical quantities are involved in the most general (n×n)
FSI relation, Eq. (12). The unitary and symmetric S matrix contains 1

2
n(n+1) independent

parameters; n eigenphase shifts and 1
2
n(n − 1) rotation angles of O. To solve for Ai’s of

observable channels in Eq. (12), therefore, we must feed the 1
2
n(n+1) dynamical parameters

of strong interaction. This is not sufficient to determine Ai uniquely. Although the FSI
relation Eq. (12) may look as if it introduced 2n constraints through the real and imaginary
parts, only a half of them, namely n of them are actually independent.8 We must provide
the relative magnitudes of Aa or Ai as an additional input in order to determine the FSI
phases uniquely. The magnitude of a decay amplitude is determined primarily by weak
interaction, i.e., the property of decay operators. Knowledge of strong interaction alone can
never determine multichannel FSI phases. We need to know interplay of strong and weak
interactions.

Nobody is capable of tackling this problem for a general value n. We will therefore be
content with studying the FSI relation first in the simple manageable case of n = 2 and then
searching a sensible approximation in more complicated and realistic cases.

Although the two-channel problem is the next to the simplest, there has been no serious
attempt to study this case in the past, probably with a good reason as we see below.
Although it may not look much relevant to the B decay of the real world, we have a chance
to see through general characteristics of coupled channel effects. For instance, how is the
FSI phase of ππ channel affected by the ρρ channel ? If one of the charm-anticharm channels

such as D(∗)D
(∗)

strongly couples to the ππ channel, how does this channel affect the FSI
of the ππ channel ?9 While simple-minded perturbative calculations have been undertaken
in the past, we would like to study these questions systematically with the two-channel toy

8 In the case of a single channel, the relation A1 = e2iδ1A∗
1 gives a constraint only on the phase of A1, not

its magnitude. In the case of n channels, something similar happens: The phases of Aa for eigenchannels

are determined when Sij are completely specified, but their magnitudes |Aa| are not.
9 For some dynamical reason the branching fraction to ρρ is an order of magnitude larger than that to ππ.

The D∗D
∗

channel has a huge branching fraction because of the robust b → c transition.
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model that incorporates unitarity.
We can write the general T -invariant S-matrix of 2×2 with three parameter (1

2
n(n+1) = 3

for n = 2) in the form of

S =

(

cos θ − sin θ
sin θ cos θ

)(

e2iδ1 0
0 e2iδ2

)(

cos θ sin θ
− sin θ cos θ

)

,

=

(

e2iδ1c2
θ + e2iδ2s2

θ (e2iδ1 − e2iδ2)cθsθ

(e2iδ1 − e2iδ2)cθsθ e2iδ1s2
θ + e2iδ2c2

θ,

)

(20)

where cos θ and sin θ are abbreviated as cθ and sθ in the second line. Substituting this
S-matrix in the FSI relation Eq. (12), we obtain the constraints on the real and imaginary
parts or the magnitudes and phases of the decay amplitudes defined by10

Aj = aj + ibj = |Aj|e∆j , (j = 1, 2) (21)

where the phases ∆1,2 are the FSI phases (the strong phases) of channel 1 and 2. We have in

mind j = 1 for ππ and j = 2 for either ρρ or D(∗)D
(∗)

of I = 0. The constraining equation
of Eq. (12) can be written out for the real and imaginary parts as











a1

a2

b1

b2











=

(

ReS ImS
ImS −ReS

)











a1

a2

b1

b2











. (22)

where ReS and ImS are the 2 × 2 matrices. To be explicit,










a1

a2

b1

b2











=











c2δ1c
2
θ + c2δ2s

2
θ (c2δ1 − c2δ2)cθsθ s2δ1c

2
θ + s2δ2s

2
θ (s2δ1 − s2δ2)cθsθ,

(c2δ1 − c2δ2)cθsθ c2δ1s
2
θ + c2δ2c

2
θ (s2δ1 − s2δ2)cθsθ s2δ1s

2
θ + s2δ2c

2
θ

s2δ1c
2
θ + s2δ2s

2
θ (s2δ1 − s2δ2)cθsθ −(c2δ1c

2
θ + c2δ2s

2
θ) −(c2δ1 − c2δ2)cθsθ,

(s2δ1 − s2δ2)cθsθ s2δ1s
2
θ + s2δ2c

2
θ −(c2δ1 − c2δ2)cθsθ −(c2δ1s

2
θ + c2δ2c

2
θ)





















a1

a2

b1

b2











.

(23)
As we have pointed out above, Eq. (23) contains only two independent constraints, not
four. Indeed, one can show that two eigenvalues of the 4 × 4 matrix in the right-hand side
are unity and generate no constraint. The two remaining eigenvalues are −1 and generate
constraints.

We now feed our dynamical input Eq. (17) in the slightly different notation;

S11 = 1 − ǫ, (|S11| < 1) (24)

where ǫ is real but not necessarily very small in magnitude. For our discussion later we
choose ǫ to be ≃ 0.5, as suggested by the Pomeron dominance in elastic scattering. It is
easy to include the nonleading Regge contributions and relax the condition ǫ∗ = ǫ. Fixing
ǫ amounts to setting two parameters in S-matrix of Eq. (20) so that we are left with one
parameter out of three. When we fix the S11 component as in Eq. (24), it is more convenient
to parametrize the S-matrix in the form

S =

(

1 − ǫ i
√

2ǫ − ǫ2eiχ

i
√

2ǫ − ǫ2eiχ (1 − ǫ)e2iχ

)

, (25)

10 Recall that the arbitrary unphysical phases of states have been fixed up to an overall ± sign by the

symmetry condition Sij = Sji on the S-matrix.
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where the angle χ is the remaining single parameter of the S-matrix. It is related to two
eigenphase shifts δ1,2 defined in Eq. (20) by

sin 2χ =
sin2 2δ1 − sin2 2δ2

sin 2(δ1 − δ2)
. (26)

Note that once S11 is given, magnitude of the channel coupling |S12| =
√

2ǫ − ǫ2 in Eq. (25
is fixed by unitarity and no longer a free parameter.

A. Case of |S22 − 1| > |S11 − 1|

Let us first study the case where the partial-wave amplitude aππ
0 (s) of rescattering is

stronger in the second channel than in the first channel, namely, i.e., |S22 − 1| > |S11 − 1|.
This may serve as a toy-model of ππ and D∗D

∗
;11 The D∗D

∗
scattering of I = 0 is presum-

ably strong because of the near-threshold enhancement and/or broad excited charmonium
resonances. For illustration we consider the extreme case that the rescattering in the second
channel is maximally strong relative to that in the first channel. This is realized by choosing
e2iχ = −1(χ = π

2
) in Eq. (25). The symmetric unitary S-matrix takes the form of

S =

(

1 − ǫ −
√

2ǫ − ǫ2

−
√

2ǫ − ǫ2 −1 + ǫ

)

, (ǫ∗ = ǫ). (27)

In terms of partial-wave amplitudes, this gives aππ
0 (s) = 1

2
iǫ and i(1− 1

2
ǫ) ≈ 3

2
iǫ for the first

and second channels, respectively, with 1
2
ǫ ≈ 0.25. By substituting this S-matrix in the FSI

relations, we obtain (see Eq. (21))

A1 = a1 + ib1, (28)

A2 = −
√

ǫ

2 − ǫ

(

a1 − i
2 − ǫ

ǫ
b1

)

.

The real and the imaginary parts of A1 are still independent of each other. The phases ∆1,2

cannot be determined uniquely even after the S-matrix is fully specified. But the phase ∆1

is related to ∆2 by

tan∆1 = − ǫ

2 − ǫ
tan ∆2

≃ −1

3
× tan ∆2. (29)

Even when χ of S22 = |S22|e2iχ is equal to 1
2
π (normally called as “resonant”), ∆2 is not

necessarily equal to 1
2
π. Although this may look puzzling at the first sight, it is not. To

determine ∆1,2 uniquely, we need to feed one more piece of information. For instance, if
the value of the ratio |A2/A1| is supplied, we can determine ∆1 and ∆2 individually. By
eliminating ∆2 from Eq. (29) we obtain the relation that determines ∆1 in terms of |A2/A1|
and ǫ:

sin2 ∆1 =
ǫ

4(1 − ǫ)

[

(2 − ǫ)
|A2|2
|A1|2

− ǫ
]

. (30)

11 The D∗D
∗

branching is larger than that of DD. The D∗D and DD
∗

channels cannot make JP = 0+.
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The ratio |A2/A1| contains information of weak interactions. In multichannel decay, weak
interaction plays a very important role in determining the FSI phases.

There is one shortcoming of this two-channel toy model: As one sees in Eq. (30), the
ratio |A2/A1| must lie in the range of

√

ǫ

2 − ǫ
≤ |A2|

|A1|
≤
√

2 − ǫ

ǫ
(31)

for this model to be applicable. At the lower boundary of |A2/A1|, it happens that ∆1 =
∆2 = 0, while ∆1 = −∆2 = ±90◦ at the upper boundary of |A2/A1|. When |A2/A1| is in
between, both ∆1 and ∆2 take nonzero values even though all elements of the S-matrix are
real. This is an important point to be emphasized. The phase of A1 can arise from the
process B → 2 → 1 through the intermediate state 2. Some may wonder why the ratio
|A2/A1| is constrained in the two-channel toy model. With channel coupling present, one
channel feeds the other by FSI to the direction to equalize magnitudes of |A1| and |A2|.
The FSI not only generates phases for A1 and A2 but also alters their magnitudes. Highly
asymmetric |A1| and |A2| are incompatible with the FSI connecting the two channels unless
ǫ → 0, i.e., |S12| → 0.

B. Case of S22 ≃ S11

When channel 2 is ρρ, we expect that the elastic ρρ scattering is asymptotic at
√

s ≃ 5GeV
and very similar to the elastic ππ scattering:

S22 = S11 = 1 − ǫ, (ǫ∗ = ǫ) (32)

In this case unitarity and symmetry require that the off-diagonal element S12 should be
purely imaginary (χ = 0 in Eq. (25)):

S =

(

1 − ǫ
√

2ǫ − ǫ2i√
2ǫ − ǫ2i 1 − ǫ

)

. (33)

This is the case that was studied by Donoghue et al[3]. The FSI relation Eq. (12) leads us
to

A1 = a1 + ib1

A2 =

√

2 − ǫ

ǫ

(

b1 + i
ǫ

2 − ǫ
a1

)

,

tan∆1 tan ∆2 =
ǫ

2 − ǫ
≃ 1

3
. (34)

Here again the FSI phases are uniquely determined only after the ratio |A2|/|A1| is given.
The phase ∆1 is expressed in terms of |A2/A1| and ǫ by the same relation as Eq. (30). The
ratio |A2/A1| lies in the same range as Eq. (31). In contrast to the case of the maximum
|S22 − 1|, the amplitude A2 and A1 are 90◦ out of phase, one real and the other purely
imaginary, at the lower and upper boundaries of the range for |A2/A1|.
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C. General two-channels

Once we have explored the two extreme cases above, it is not difficult to find the general
solution for an arbitrary value of χ in Eq. (25). By rewriting the FSI relation in A′

2 ≡ e−iχA2,
we can reduce it to the case of S22 = S11 above. We obtain the solution for general χ as

A1 = a1 + ib1

A2 =

√

2 − ǫ

ǫ
eiχ
(

b1 + i
ǫ

2 − ǫ
a1

)

,

tan∆1 tan(∆2 − χ) =
ǫ

2 − ǫ
. (35)

The first and second lines of Eq. (35) reduce to those of the previous cases; |1−S22| = max
and S11 = S22 as χ → 1

2
π and χ → 0, respectively. The third line relates the FSI phases

∆1 and ∆2 to each other with parameter ǫ and χ. The ratio |A2/A1| is related to ∆1 and ǫ
exactly in the same way as in Eq. (30). Consequently |A2/A1| is also restricted to the same
range, Eq. (31).

We can actually find the exact solution even when we include the very small imaginary
part of 1 − ǫ in S11 due to the low-ranking Regge trajectories in elastic scattering. In this
most general case it is convenient to write the S-matrix in the form

S =

(

(1 − ǫ)e2iχ1 i
√

2ǫ − ǫ2ei(χ1+χ2)

i
√

2ǫ − ǫ2ei(χ1+χ2) (1 − ǫ)e2iχ2

)

, (ǫ∗ = ǫ). (36)

Unitarity and symmetry fixes the phase of S12 as shown above once those of S11 and S22

are given. For this reason one earlier literature[15] assigned the angles χ1 and χ2 to the
“initial-state” and “final-state” interactions of scattering, hinting that the phases of decay
amplitudes A1 and A2 acquire χ1 and χ2, respectively, by FSI. Unfortunately this interpre-
tation was wrong. As we see below, the phases of A1,2 are χ1,2 plus additional contributions
that depend on mixing of the channels and weak interaction. It should also be pointed out

that the simple phase relation like arg Sij = arg
√

(−i)2SiiSjj holds only for the S-matrix of

2 × 2, not of more than two channels.
To solve the FSI relation with Eq. (36) we factor out the “elastic phases” χ1 and χ2 of

the diagonal S-matrix elements Sii (not of the partial-wave amplitudes al(s)) from the decay
amplitudes by introducing A′

i by A′
i = e−iχiAi (i = 1, 2). Then the FSI relation A′ = SA

′∗

reduces to the form identical to Eq. (33). Therefore the solution for A1,2 can be immediately
written as Eq. (34):

A1 = eiχ1(a1 + ib1)

A2 =

√

2 − ǫ

ǫ
eiχ2

(

b1 + i
ǫ

2 − ǫ
a1

)

,

tan(∆1 − χ1) tan(∆2 − χ2) =
ǫ

2 − ǫ
, (37)

where a1 and b1 are real The first and the second line of Eq. (37) requires |A2/A1| to remain
in the same range as in the previous two special cases. (cf Eq. (31)). The relation of Eq.
(30) is trivially modified as

sin2(∆1 − χ1) =
ǫ

4(1 − ǫ)

[

(2 − ǫ)
|A2|2
|A1|2

− ǫ
]

. (38)
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This relation is the bottom line of the general two-channel toy model: The total FSI phase ∆1

of A1 is sum of the rescattering phase χ1 of
√

S11, not of the elastic partial-wave amplitude
(al = 1

2i
(Sl − 1)), plus the the phase due to rescattering through the second channel. It

cannot be over-emphasized that in the presence of inelasticity the phase of
√

S11 is very
different from the phase of the partial-wave amplitude. For Pomeron-dominated scattering,
for instance, arg a0(s) = 1

2
π since al(s) is purely imaginary for all l, but arg

√
S11 = 0 or

±π since S11 is real and positive for 0 < Ima0 < 0.5. The phases of
√

Sl and al(s) would
be equal only in the elastic limit where S11 = e2iδ1 and al(s) = (1/2i)(S11 − 1) = eiδ1 sin δ1.
It makes no sense whatsoever even as an approximation to equate the FSI phase with the
phase of the elastic partial-wave amplitude al in B decay.

It is worth mentioning here that the solutions of the two-channel problem, Eqs. (37)
and (38), apply to the Ω− decay into ΛK− and (Ξπ)I=1/2. The ΛK− and Ξπ yields add up
to over 99% of the observed nonleptonic final states. In this case the lower ranking Regge
trajectories contribute more to the diagonal S-matrix elements than in the light hadrons
channels of B decay.

While the two-channel toy model casts light on many important issues, it has one unde-
sirable feature that the ratio |A2/A1| is restricted within the rather narrow range set by Eq.
(31). Numerically,

0.58 ≤ |A2/A1| ≤ 1.73. (39)

This constraint limits applicability of the two-channel toy-model to B decay modes. We
must extend to more than two channels to study B decay. However, as the coupled channels
increases, the number of dynamical unknowns quickly increases in the FSI relation. In
order to keep our problem manageable, we must introduce some approximation that keeps
mathematical complexity under control.

V. TRUNCATED MULTICHANNEL PROBLEM

Going back to our fundamental equation Eq. (12), we consider the situation where one
inelastic channel makes a dominant feed back to the elastic channel (channel 1) and all other
inelastic channels are either unimportant individually or largely cancel among them. We
are specifically interested in the case,

|S21| ≪ |S11|, but |A2| ≫ |A1| (40)

such that
|S12A

∗
2| = O(|S11A

∗
1|), |

∑

j≥3

S1jA
∗
j | ≪ |S12A

∗
2|. (41)

In this case we can truncate the sum over the inelastic channels at j = 2;

A1 =
∑

j=1,2

S1jA
∗
j +

∑

j≥3

S1jA
∗
j ≃ S11A

∗
1 + S12A

∗
2. (42)

The FSI relation for the channel 2 reads

A2 = S21A
∗
1 + S22A

∗
2 +

∑

j≥3

S2jA
∗
j . (43)

Since unlike the off-diagonal S21 the diagonal S-matrix element S22 = 1 + 2ia22
0 (s) contains

the term unity, we expect that S22 is O(1) or a substantial fraction of it unless the term 1 is
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cancelled accidentally by 2ia22
0 (s) with high accuracy. In comparison, S12 represents a small

leakage into a dominant inelastic channel in the present case. Therefore

|S21A
∗
1/S22A

∗
2| = |S21/S22| × |A∗

1/A
∗
2|, (44)

where the both factors in the right-hand side are small. In other words, the effect of the
single elastic channel back on a robust inelastic channel j is negligible when the coupling
Sj1 between them is feeble. Therefore, magnitude of the first term S21A

∗
1 in the right-hand

side of Eq. (43) is much smaller than that of |S22A
∗
2| by the assumptions made in Eqs. (40)

and (41). Therefore, we may drop the first term in Eq. (43). Then no information of the
channel 1 is needed to solve Eq. (43) for A2. Therefore we solve only Eq. (42) and obtain a
relation between A1 and A2. Solving Eq. (43) for A2 may be hard. In the numerical exercise
later we do not attempt to compute for A2 theoretically in terms of other inelastic channels,
but resort to experiment for information of A2.

The S-matrix now need not satisfy unitarity in the subsector of channel 1 and 2. It can
be written in general as

S =

(

(1 − ǫ)e2iχ1 iκei(χ1+χ2+χκ)

iκei(χ1+χ2+χκ) λe2iχ2

)

, (0 < κ <
√

2ǫ − ǫ2, 0 < λ <
√

1 − κ2), (45)

where two real parameters κ and λ have been introduced to describe inelasticity of scattering.
When the channel 2 is also a two-body light-hadron channel, the value of λ is ≃ 1 − ǫ and
χ2 ≃ χ1. In B decay the branching fractions to two-body light-mesons are much smaller
than those to charmed meson pairs by the property of weak interaction. The decay B → Kπ
through D∗D∗

s is a typical example since |κ| is much smaller than 1 − ǫ but |A2| is much
larger than |A1|. It has been speculated that the presence of the D∗D∗

s channel may generate
a large FSI phase for Kπ[7]. We will examine this possibility later.

The FSI relation can be solved for A1,2 even in the presence of the additional parameter
κ by the rephasing technique that we have used earlier. When we express A1 and A2 in
terms of a2 and b2 instead of a1 and b1, the solution of Eq. (12) with Eq. (45) is:

A1 = κeiχ1

(

1

ǫ
[−a2 sin(χ2 + χκ) + b2 cos(χ2 + χκ)] +

i

2 − ǫ
[a2 cos(χ2 + χκ) + b2 sin(χ2 + χκ)]

)

A2 = a2 + ib2, (46)

As we have pointed out, the parameter λ is not needed to express the relation between A1

and A2 in the truncated approximation. Although χκ enters A1, we can express the phase
∆1 without χκ by using experimental knowledge of |A2/A1|. Rewriting Eq. (46) with the
magnitudes and phases, we obtain a simple generalization of the previous relation,

sin2(∆1 − χ1) =
1

4(1 − ǫ)

(

κ2 |A2|2
|A1|2

− ǫ2
)

. (47)

The right-hand side of Eq. (47) gives the contribution of the channel coupling that is to be
added to the elastic contribution χ1. The ratio |A2/A1| is now bounded as

ǫ

κ
≤ |A2|

|A1|
≤ 2 − ǫ

κ
(48)

If κ is small, that is, if the leakage into the channel 2 is small, large values can be accommo-
dated for |A2/A1|. Therefore the truncated model is applicable to more general situations
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than the two-channel toy model that we have discussed. The ratio |A2/A1| contains informa-
tion of weak interaction. It is amusing to see in Eq. (47) that the strong phase ∆1 coincides
with the small “elastic phase” χ1 of

√
S11 when A2 takes the smallest value, |A2/A1| = ǫ/κ,

in the allowed range of Eq. (48). The channel coupling effect |∆1−χ1| is the strongest when
|A2/A1| takes the upper limit (2 − ǫ)/κ in Eq. (48).

If we proceed further and include two prominent inelastic channels, the FSI relation for
A1 is:

A1 ≃ S11A
∗
1 + S12A

∗
2 + S13A

∗
3. (49)

If we continue along this line and incorporate more inelastic channels, the FSI equation for
channel 1 turns into

a1 + ib1 = S11(a1 + ib1)
∗ +

∑

j≥2

S1jA
∗
j . (50)

The first term in the right-hand side can be viewed as counteraction of elastic rescattering. It
affects not only on the phase of A1 but also causes long-distance enhancement or suppression
on magnitude of A1 depending on the force in the elastic channel. With S11 = 1 − ǫ, Eq.
(50) reveals an interesting general feature of the multichannel FSI. Separating the real and
imaginary parts of Eq. (50), we have in the case of real S11

a1 =
1

ǫ
Re

∑

j≥2

S1jA
∗
j ,

b1 =
1

2 − ǫ
Im

∑

j≥2

S1jA
∗
j . (51)

Eq. (51) shows that elastic rescattering S11 enhances the inelastic rescattering effect by 1/ǫ
(≃ 2) for the real part a1 of A1 and and suppresses it for the imaginary part b1 by 1/(2− ǫ)
(≃ 2

3
). This characteristic depends only on S11, which we belive we know fairly accurately.

Despite its simplicity Eq. (51) contains useful information. For instance, if the transition
to and from channel 1 can be described by the Born terms of t- and u-channel exchanges,
the off-diagonal partial-wave amplitudes are real so that the off-diagonal S-matrix S1j (j ≥
2) = 2ia

(1j)
0 are purely imaginary. Therefore the real decay amplitudes Aj (j ≥ 2) of

the inelastic channels contribute to the imaginary part b1 of channel 1 in this case. Even
if there is no resonance in the process, the phase ∆1 can be very large in this way. If
furthermore the “inelastic” decay amplitudes Aj (j ≥ 2) happen to be all real, the phase
∆1 would be ±90◦. This is not surprising: In the language of dispersion theory the on-
shell inelastic intermediate states generate an absorptive part for A1 that turns out to be
purely imaginary in this situation. Our Eq. (51) involves one dynamical input: The elastic
scattering amplitudes of light mesons are almost purely imaginary (Pomeron-dominated).

VI. NUMERICAL EXERCISE

Some numerical exercise is called for to show relevance of our endeavor to the B decay
of the real world. Contrary to the initial optimism that had prevailed before B physics
experiment started, analysis of experiment seems to suggest that the FSI phases of some two-
body decay amplitudes appear to be much larger than what we expected in the original short-
distance picture[20]. The word Kπ puzzle has been coined for the unexpectedly large tree-
contribution and/or FSI phases in Kπ modes. As the perturbative technique has become
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more sophisticated, people have come to agree that emission and absorption of soft and
collinear quarks and gluons plays an important role in many decay modes[21, 22]. Such
soft constituents contribute to the FSI phases involving long-distance physics. While one
can parametrizes such contributions in the soft-collinear theory, one cannot evaluate them
numerically in perturbative argument. Our S-matrix approach also has its own drawback:
While elastic scattering of two light hadrons at energy mB has been well understood, we
know less about their inelastic scattering. Nonetheless we would like to show here that our
method may be useful in some of B decay modes.

It is believed that the decay B → Kπ occurs primarily with the penguin interaction
∼ [(bs)(qq) + h.c]. In the penguin process the coupling to channels such as K∗ρ need to be
studied as a source of the strong phase of the Kπ amplitude. However, it has been argued
that Kπ can be produced indirectly with the tree interaction ∼ [(bc)(cs) + h.c.] as well
through the charmed-meson-pair states such as DDs and D∗D∗

s [7]. The Kπ amplitude of
this process acquires a strong phase different from the direct penguin amplitude. What can
our approach say about this problem ?

The branching fractions have been measured for the following two-body channels that
couple to Kπ in B0 decay[23]:

B(K+π−) = (1.88 ± 0.07) × 10−5,

B(K0π0) = (1.15 ± 0.10) × 10−5,

B(Kη) < 2.0 × 10−6, (52)

B(Kη′) = (6.5 ± 0.4) × 10−5, (53)

B(K∗0φ) = (0.95 ± 0.08) × 10−5

B(K∗+ρ−) < 1.20 × 10−5

B(K∗0ω) < 4.2 × 10−6

B(D−D+
s ) = (6.5 ± 1.3) × 10−3,

B(D∗−D∗+
s ) = (1.77 ± 0.14) × 10−2. (54)

All of them can make JP = 0+, the spin-parity of Kπ. The states Kπ and K∗ρ can be
either in I = 1

2
or I = 3

2
while all other modes are only in I = 1

2
.

From the Regge phenomenology on elastic Kπ scattering, we have already estimated
ǫ for the Pomeron contribution in Section III. The ρ and f2 trajectories with exchange
degeneracy allow us to estimate the small imaginary part of S11. By adding the ρ and f2

Regge contributions, we obtain numerically

S11 ≃
{

0.39 × e0.06i (I = 1
2
),

0.46 × e−0.10i (I = 3
2
).

(55)

The ρ/f2 contributions to the scattering amplitudes T are dominantly imaginary for I = 1
2

and real for I = 3
2
, as we expect from s to t-channel duality. Therefore they generate a

larger imaginary part for S = 1 + 2iT in the I = 3
2

channel. This is very different from our
intuitive picture in the single-channel case. Though we do not attach errors to our estimate,
errors as large as factor two are possible for the phases in Eq. (55).

Estimate of S12 is less reliable than S11 owing to very indirect experimental information
and to larger theoretical uncertainties. We eliminate the K∗φ channel from our consideration
since the Regge residue or the coupling of φ to πρ is highly suppressed (“OZI-forbidden”).
In contrast K∗ρ can couple to Kπ without such suppression. While a loose upper bound
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has been set on K∗ρ experimentally (see Eq. (54)), we believe that the K∗ρ channel is
more important than the K∗φ channel. We may use the Regge phenomenology to estimate
S12 for the K∗ρ state of longitudinal polarizations in the final state. For the scattering
Kπ → K∗ρ, the leading Regge poles are ω and a2 which are exchange degenerate.12 The
couplings of πρω and πρa2 are known on the mass shells of ω and a2, respectively, from
low-energy spectroscopy. The corresponding KK∗ couplings of ω and a2 are obtained by an
SU(3) rotation. But we need to extrapolate them to the off-shell ρ and a2 to relate them
to the Regge residues. This extrapolation is a major source of uncertainty. If we ignore the
extrapolation, they are at the same level in magnitude as the nonleading Regge contributions
in S11;

SK∗ρ
12 ≈

{

−0.07 + 0.02i (I = 1
2
),

−0.05i (I = 3
2
).

(56)

Using the ratio |A2/A1| computed with the measured branching fraction and the upper
bound listed in Eq. (54), we reach the crude estimate,

|SK∗ρ
12 A∗

2| < 0.1 × |S11A
∗
1|, (57)

Despite large uncertainty of these numbers we may conclude with Eq. (56) that the inelastic
term S12A

∗
2 of the K∗ρ channel in the Kπ mode is not significant relative to the elastic term

S11A
∗
1. It is certainly not a major source of the strong phase for the Kπ amplitude in

the standard penguin decay (not through cc). The same line of estimate suggests that the
K∗ω state is neither important to the FSI phase of Kπ. Some may wonder about one-pion
exchange in Kπ ↔ K∗ρ. The Reggeized pion exchange amplitude for Kπ → K∗ρ is down
by another power of s0.5 relative to those of ω and a2 exchanges. The small denominator
of the pion propagator does not enhance the amplitude near forward direction because the
Lorentz structure requires the amplitude near the pion pole to be proportional to

(ǫ(ρ) · pπ)(ǫ(K∗) · pK)

m2
ρ − 2(pπ · pρ)

. (58)

The both factors in the numerator vanish up to O(4m2
ρ/m

2
B, 4m2

K∗/m2
B) for longitudinally

polarized K∗ and ρ in the forward direction (pρ ‖ pπ). They eliminate a forward peak
from the pion pole. The Regge theory predicts that the rest of the scattering amplitude
falls sharply (∼ eα′

π(0)t ln s) off the forward direction. Therefore the pion exchange can be
dismissed. Then we feel safe to conclude with Eq. (57) that the coupling of Kπ to the K∗ρ
channel is not important in determining the FSI phases for the Kπ modes.

The Kη and Kη′ channels can couple to the Kπ channel of I = 1
2

through the a2 Regge
exchange. Although this contribution has the same mB dependence as the ρ and f2 Regge
exchanges, the a2 Regge residues with πη(η′) are most likely smaller than the residue with
πρ: We can estimate from the a2 decay branching that, after the d-wave phase space factor
is separated, the on-shell a2 couplings to πη and πη′ are about factor 20 smaller than those
to πρ. Therefore neither Kη nor Kη′ compete with K∗ρ in the final state. Therefore we
may leave out Kη and Kη′ from our consideration.

12 The K∗ trajectory generates a backward peak is generated, but it is less important than the forward peak.

We neglect the backward peak contribution to S12.
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The contributions from nonresonant three-body final states are harder to estimate since
computation of S12 is next to impossible. There are many nonresonant multiparticle channels
with relatively minor branching fractions. If rescattering of Kπ to multibody channels is
quasi-diffractive with no quantum number exchange, the Pomeron can contribute. In such
scattering the final states consist of two lumps of relatively small invariant masses that carry
the same flavors as K and π. They are likely to end up in two-body states of highly excited
meson states, for instance, K2(1430)a1. While this is a possibility, none of such modes have
been positively identified so far in measurement.

Genuine nonresonant three-body channels are probably not a major source of the FSI
phases, unless their contributions add up by constructive interference to a large value. In
fact, it is conceivable that they sum up in random phases into relatively a small number[4, 5].
That is one motivation when we have introduced the truncated approximation. Our tentative
conclusion on the Kπ amplitudes (I = 1

2
, 3

2
) of the light-quark penguin decay operators is

that the FSI phase produced by coupling to the inelastic channels is insignificant. Analysis
of the Kπ amplitudes in search of the weak phases was started more than ten years ago.
With little knowledge of the strong phases, however, the analysis could be carried out only
by assuming that the long-distance strong phases be negligible[24].

The charmed meson-pair channels are very different. Since they are the CKM dominant
tree-decay final states, their branching fractions are a few orders of magnitude larger than
that of the penguin-dominated decay. They can annihilate into Kπ. In the quark picture this
process can be viewed as the on-shell contribution of the cc penguin to Kπ. Some call this
process as “charming penguin”[7]. Among the charmed meson pairs, the most prominent
decay channel of JP = 0+ is D∗D∗

s . Its amplitude can be estimated with Eq. (54) as

|AD∗−D∗+
s

/AKπ(I=1/2)| ≃ 25. (59)

One important question here is how much of the observed total AKπ(I=1/2) is the “charming
penguin” contribution. Since we expect that long-distance physics enters the on-shell process
of charmed-meson pairs at energy mB, it is not easy to evaluate its magnitude. Some argue
that it can be very large[17, 18]. However, a counter argument was made to advocate the
short-distance argument[19]. Theorists have not come to consensus on magnitude of this
contribution. Therefore we insert one fudge factor r here for this contribution to A1 as

|AD∗−D∗+
s

/AKπ(I=1/2 via cc)| ≃ 25 × 1

r
, (r < 1) (60)

where r, the fraction of the cc contribution, may be as large as a half or even more[17]. It
must be settled by theory rather than by experiment. With this fudge factor Eq. (47) turns
into

sin2(∆1 − χ1) =
1

4(1 − ǫ)

(

κ′2 |A2|2
|A1|2

− ǫ2
)

, (61)

where κ′ = κ/r = |S12/rS11|. Even if the spill-over of D∗D∗
s into Kπ is as tiny as one tenth

of percent (κ2 = |S12/S11|2 ≃ 10−3), the D∗D∗
s channel may control the FSI phase of the

Kπ amplitude that comes through cc. To proceed further, we must look into the transition
Kπ ↔ D∗D∗

s . (Fig.4)
Application of the Regge theory is questionable to the charm-pair channels since the

charmed meson masses are around 2 GeV and the total energy is a little above 5 GeV.
Departing from the Regge theory, let us make the Born approximation in t-channel exchange.
The exchanged mesons are the charmed mesons D, D∗, · · ·. For D-exchange, we know
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FIG. 4: The dominant inelastic scattering Kπ → D∗D∗
s .

the D∗Dπ coupling from the decay D∗ → Dπ and can compute the D∗DsK coupling by
an SU(3) rotation of the D∗Dπ coupling. The differential cross section rises toward the
forward direction when the D meson is exchanged. For D∗ exchange, we can deduce the
D∗D

∗
π coupling from the D∗Dπ coupling with the heavy quark spin symmetry and rotate it

into the D∗D∗
sK coupling by SU(3). In contrast to the D exchange, the Lorentz structure of

the vertex ∼ εµνκλǫνp1κp2λ of D∗ exchange cancels a forward peak that would be otherwise
generated by the D∗ propagator. For this reason the D∗-exchange is less important. When
we compute the D contribution in the Feynman diagram with the on-shell couplings, we
obtain |S12| ≈ 0.5. But this is obviously a nonsense. The reason is that we have ignored
the form-factor damping effect of the exchanged off-shell D. For an order-of-magnitude
estimate we may multiply a factor of m2

∗/m
2
D as a form-factor effect where m∗ ≃ 0.3 GeV

is the binding scale of the charmed mesons. Then our estimate goes down by more than an
order of magnitude from |S12| ≈ 0.5 to |S12| ≈ 0.014. This latter value is probably closer
to reality. It is roughly in line with the rule of thumb; in the quark picture a pair creation
probability of cc is suppressed by about (mq/mc)

2 relative to light-quark pair creation of
qq, where the quark masses are the constituent masses. This rule works roughly for ss and
cc production in high-energy collision. If we use this rule, we obtain |S12| ≃ 0.01 from Eq.
(56) with ms/mc ≃ 1/3. Therefore we choose as our best guess

S
D∗D∗

s

12 ≈ 0.01i. (62)

As we have noted earlier, S12 is purely imaginary for real a0(s). The number of Eq. (62) is
obviously an order-of-magnitude estimate at best. With ǫ ≃ 0.5 and tentatively r ≈ 0.5, a
crude central value of our estimate for κ′ is

κ′ ≈ 0.01/[0.5 × (1 − 0.5)] = 0.04. (63)

We now substitute all these numbers in Eq. (61) of the truncated approximation. We take
the number of Eq. (63) as a ballpark figure and sweep the value of κ′2 by a factor two across
this value to see what FSI phase can be generated for Kπ of I = 1

2
by the channel coupling

to the D∗D∗
s channel. The result is plotted in Fig. 5. The value of κ′|A2/A1| is constrained

between 0.5 and 1.5 by Eq. (61) and sweeps in the region between two vertical broken lines.
Within the uncertainty of κ′, the FSI phase ∆1 of the Kπ amplitude through cc can be

any value between 21◦ and 69◦. Eq. (61) does not determine the sign of ∆1 since it does not
contain full information of A2. Because of the large uncertainty of κ′, we cannot constrain ∆1

meaningfully at present. Even ∆1 ≃ 90◦ is not reliably excluded. Keeping the uncertainty
of our estimate in mind, we should state here only that the channel coupling to D∗D∗

s is
capable of producing a very large strong phase for the charming penguin Kπ amplitude, in
particular in the case that the “charming penguin amplitude” is a sizable fraction of the
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FIG. 5: The FSI (strong) phase of the Kπ decay channel of I = 1
2 as the Kπ → D∗D∗

s transition

amplitude is varied in magnitude.

total amplitude. Quantitatively reliable computation of the FSI phase will be possible after
we have obtained a better theoretical estimate of S12 for Kπ ↔ D∗D∗

s as well as magnitude
of the decay amplitude through cc. Until then we must not set this strong phase to zero
but leave it as an unknown parameter to be determined by fit to experimental data. If such
experimental fit clearly requires a large FSI angle for the Kπ mode of I = 1

2
but not of

I = 3
2
, we shall be able to assert that the on-shell cc intermediate state plays an important

role in the decay B → Kπ.
The statement above can be made for many other two-body light-hadron modes. The ππ

mode couples to ρρ whose branching fraction is nearly an order of magnitude larger than
that of ππ. But perturbative calculation of the ππ ↔ ρρ transition[16] by the Born diagrams
without off-shell damping can easily overestimate it. With an estimate of S12 along the same
line as for Kπ ↔ K∗ρ, the right-hand side of Eq. (47) comes out to be negative in the case
of ππ → ρρ, It implies that the branching fraction of ρρ is not large enough to affect the FSI
phase for the ππ amplitudes of the tree decay ∼ (bu)(qq) + h.c. (q = light quarks). The ππ
of I = 0 can be fed also by the charmed hadron channel D∗D

∗
whose branching fraction is

two orders of magnitude larger than that of ππ. For the ππ amplitude through cc, coupling
to D∗D

∗
is the most important source of the strong phase. To obtain the strong phases and

to compare with experiment, we again need to know about relative importance of the two
classes of decay; b → uud and b → ccd for B → ππ.

In contrast, the tree-dominated CKM-favored decay modes such as B → Dπ have no wide
open inelastic channels. Transition to the D∗ρ channel is as insignificant as the transition
to Kπ → K∗ρ in the Kπ mode. Since the D∗ρ decay branching fraction is comparable
to that of Dπ and S12 is much smaller than S11 (cf Eqs. (56) and (57)), of its elastic
scattering, we expect that |S12A

∗
2| ≪ |S11A

∗
1| and therefore the channel coupling contribution

is unimportant. It means that the FSI phases are small in these modes and that simple
short-distance calculation of the phases can produce an answer not far from reality.

VII. COMMENT AND DISCUSSION

One of our purposes is to solve the most general two-channel model exactly and to
clarify the mechanism of generating strong phases in this toy model. We have seen above
that existence of competing channels completely changes the strong phase from that of
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the “elastic rescattering phase” in all cases of two-channel S-matrix. Unitarity plays an
important role here. The other purpose is to introduce a feasible approximation scheme
which may be applicable to cases of special interest in B decay. We have applied this
method to the decay B → Kπ and have made semiquantitative analysis. But its outcome
is not numerically satisfying because of limitation in available knowledge about off-diagonal
scattering. We have extended our analysis to the general multichannel case and come to
one simple interesting observation: Though it may sound odd, inelastic scattering tend to
enhance the strong phase of the elastic channel most when inelastic amplitudes are real (i.e.,
S1j = iT1j = imaginary) rather than imaginary, if the strong phases of the inelastic decay
amplitudes are small. (cf Eq. (51).)

It is a big challenge to go beyond the two-channel approximation. As the number of
channels n increases, the number of parameters in the FSI relation increases as 1

2
n(n + 1)

for strong interaction. In addition we need piece of information from weak interaction. In
the truncated approximation we have kept only a single dominant one among the inelastic
channels. Our assumption is that all other inelastic channels are less important or else sum
up in random phases to become numerically insignificant. If the higher inelastic channels
do not sum randomly, there must be some underlying dynamical reason for it. In such a
case some approach orthogonal to ours may have advantage. For instance, it is an approach
based on quarks and gluons instead of hadrons.

The major source of the strong (FSI) phase in the multichannel case is the transition
to inelastic channels. Consequently accurate computation of the FSI phases depends on
knowledge of the transition S-matrix at energy mB between a channel of our interest and
dominant inelastic channels. That is, we need to know dynamics of long and intermediate
distances at this energy. The present author is of the opinion that quantitatively we have
a little better handle on hadron physics numerically than on the soft and collinear quarks
and gluons in this territory. But opinions probably divide among physicists of different
generations.
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APPENDIX A: REAL ORTHOGONALITY OF TRANSFORMATION

Expansion of the observable state |jout〉 in the S-matrix eigenstates |aout〉 is defined by

|jout〉 =
∑

a

Oja|aout〉. (A1)

At this stage the matrix O is assumed to be only unitary, not necessarily orthogonal. Make
time-reversal on the scattering amplitude from eigenstate |a〉 to observable state |j〉 in our
phase convention of states under time reversal:

〈jout|ain〉 = 〈j|S|a〉 T
= 〈a|S|j〉 = 〈aout|jin〉. (A2)
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Operating S† on Eq. (A1), we obtain

|jin〉 =
∑

a

Oja|ain〉. (A3)

Substitution of Eqs. (A1) and (A3) in Eq. (A2) gives us

O∗
jae

2iδa = Ojae
2iδa , (A4)

which proves that O is orthogonal:
O∗

ja = Oja. (A5)
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